Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 263
Filtrar
1.
BMC Chem ; 18(1): 76, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637900

RESUMO

Nod-like receptor protein 3 (NLRP-3), is an intracellular sensor that is involved in inflammasome activation, and the aberrant expression of NLRP3 is responsible for diabetes mellitus, its complications, and many other inflammatory diseases. NLRP3 is considered a promising drug target for novel drug design. Here, a pharmacophore model was generated from the most potent inhibitor, and its validation was performed by the Gunner-Henry scoring method. The validated pharmacophore was used to screen selected compounds databases. As a result, 646 compounds were mapped on the pharmacophore model. After applying Lipinski's rule of five, 391 hits were obtained. All the hits were docked into the binding pocket of target protein. Based on docking scores and interactions with binding site residues, six compounds were selected potential hits. To check the stability of these compounds, 100 ns molecular dynamic (MD) simulations were performed. The RMSD, RMSF, DCCM and hydrogen bond analysis showed that all the six compounds formed stable complex with NLRP3. The binding free energy with the MM-PBSA approach suggested that electrostatic force, and van der Waals interactions, played a significant role in the binding pattern of these compounds. Thus, the outcomes of the current study could provide insights into the identification of new potential NLRP3 inflammasome inhibitors against diabetes and its related disorders.

2.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38557677

RESUMO

Protein design is central to nearly all protein engineering problems, as it can enable the creation of proteins with new biological functions, such as improving the catalytic efficiency of enzymes. One key facet of protein design, fixed-backbone protein sequence design, seeks to design new sequences that will conform to a prescribed protein backbone structure. Nonetheless, existing sequence design methods present limitations, such as low sequence diversity and shortcomings in experimental validation of the designed functional proteins. These inadequacies obstruct the goal of functional protein design. To improve these limitations, we initially developed the Graphormer-based Protein Design (GPD) model. This model utilizes the Transformer on a graph-based representation of three-dimensional protein structures and incorporates Gaussian noise and a sequence random masks to node features, thereby enhancing sequence recovery and diversity. The performance of the GPD model was significantly better than that of the state-of-the-art ProteinMPNN model on multiple independent tests, especially for sequence diversity. We employed GPD to design CalB hydrolase and generated nine artificially designed CalB proteins. The results show a 1.7-fold increase in catalytic activity compared to that of the wild-type CalB and strong substrate selectivity on p-nitrophenyl acetate with different carbon chain lengths (C2-C16). Thus, the GPD method could be used for the de novo design of industrial enzymes and protein drugs. The code was released at https://github.com/decodermu/GPD.


Assuntos
Engenharia de Proteínas , Proteínas , Proteínas/química , Sequência de Aminoácidos , Engenharia de Proteínas/métodos
3.
Heliyon ; 10(5): e27298, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38495136

RESUMO

Pistacia chinensis is locally practiced for treating diabetes, pain, inflammation, and erectile dysfunction. Therefore, the current studies subjected the crude extract/fractions and the isolated compound (2-(3,4-dihydroxyphenyl)-7,8-dihydroxy-3-methoxy-4H-chromen-4-one) to α-glucosidase inhibitor and anti-glycation activities. The development of long-term complications associated with diabetes is primarily caused by chronic hyperglycemia. Regarding α-glucosidase, the most significant inhibitory effect was observed with compound 1 (93.09%), followed by the methanolic extract (80.87%) with IC50 values of 45.86 and 86.32 µM. The maximum anti-glycation potential was shown by an isolated compound 1 followed by methanolic extract with effect inhibition of 90.12 and 72.09, respectively. Compound 1 is expected to have the highest gastrointestinal absorption rate, with a predicted absorption rate of 86.156%. This indicates oral suitability. The compound 1 is expected to have no harmful effects on the liver. In addition, our docking results suggest that alpha-glucosidase and isolated compounds showed strong interaction with ILE821, GLN900, and ALA901 residues, along with a -11.95 docking score.

4.
BMC Chem ; 18(1): 57, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528576

RESUMO

Lung cancer is a disease with a high mortality rate and it is the number one cause of cancer death globally. Approximately 12-14% of non-small cell lung cancers are caused by mutations in KRASG12C. The KRASG12C is one of the most prevalent mutants in lung cancer patients. KRAS was first considered undruggable. The sotorasib and adagrasib are the recently approved drugs that selectively target KRASG12C, and offer new treatment approaches to enhance patient outcomes however drug resistance frequently arises. Drug development is a challenging, expensive, and time-consuming process. Recently, machine-learning-based virtual screening are used for the development of new drugs. In this study, we performed machine-learning-based virtual screening followed by molecular docking, all atoms molecular dynamics simulation, and binding energy calculations for the identifications of new inhibitors against the KRASG12C mutant. In this study, four machine learning models including, random forest, k-nearest neighbors, Gaussian naïve Bayes, and support vector machine were used. By using an external dataset and 5-fold cross-validation, the developed models were validated. Among all the models the performance of the random forest (RF) model was best on the train/test dataset and external dataset. The random forest model was further used for the virtual screening of the ZINC15 database, in-house database, Pakistani phytochemicals, and South African Natural Products database. A total of 100 ns MD simulation was performed for the four best docking score complexes as well as the standard compound in complex with KRASG12C. Furthermore, the top four hits revealed greater stability and greater binding affinities for KRASG12C compared to the standard drug. These new hits have the potential to inhibit KRASG12C and may help to prevent KRAS-associated lung cancer. All the datasets used in this study can be freely available at ( https://github.com/Amar-Ajmal/Datasets-for-KRAS ).

5.
Heliyon ; 10(2): e24267, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38304837

RESUMO

In the current studies two naproxen derivatives (NPD) were evaluated for analgesic and anti-inflammatory properties. The acetic acid and hot plate animal models were used to screen the compounds for analgesic potential. While the anti-inflammatory potential was evaluated through animal paw edema, induced by several inflammatory mediators (carrageenan, bradykinin, and prostaglandin E2), the xylene-induced ear edema was also used as an inflammatory model. Both NPDs showed significant (p < 0.001) antinociceptive effects in the acetic acid-induced writhing paradigm. In the case of the hot plate, the NPD 1 at the tested dose of 5 mg/kg enhanced the latency time after 60 min of injection, which remained significant (p < 0.001) up to the end of the experiment duration. The maximum percent inhibition of NPD 1 was 87.53. The naloxone injection significantly lowered the latency time of NPD 1 as compared to NPD 2. Regarding the anti-inflammatory effect, both of the tested NPDs demonstrated a significant reduction in paw edema against various inflammatory mediators, as mentioned above; however, the anti-inflammatory effect of NPD 1 was better. The maximal percent inhibition by NPD 1 and 2 was 43.24 (after 60 min) and 45.93 (after 90 min). A considerable effect also resulted from xylene-induced ere edema. Further, a molecular docking study was carried out to investigate the binding modes of the NPD. The docking analysis revealed that the NPD significantly interacted with the COX2 enzyme. Furthermore, molecular dynamics simulation was carried out for the docked complexes. The MD simulation analysis revealed the high stability of the two naproxen derivatives.

6.
Future Med Chem ; 16(6): 497-511, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38372209

RESUMO

Background: Unsymmetrical thioureas 1-20 were synthesized and then characterized by various spectroscopy techniques such as UV, IR, fast atom bombardment (FAB)-MS, high-resolution FAB-MS, 1H-NMR and 13C-NMR. Methods: Synthetic compounds 1-20 were tested for their ability for antioxidant, lipoxygenase and xanthine oxidase activities. Results: Compounds 1, 2, 9, 12 and 15 exhibited strong antioxidant potential, whereas compounds 1-3, 9, 12, 15 and 19 showed good to moderate lipoxygenase activity. Ten compounds demonstrated moderate xanthine oxidase inhibition. Conclusion: Compound 15 displayed the highest potency among the series, exhibiting good antioxidant, lipoxygenase and xanthine oxidase activities. Theoretical calculations using density functional theory and molecular docking studies supported the experimental findings, indicating the potential of the synthesized compounds as potent antioxidants, lipoxygenases and xanthine oxidase agents.


Assuntos
Antioxidantes , Lipoxigenase , Antioxidantes/química , Simulação de Acoplamento Molecular , Xantina Oxidase/química , Xantina Oxidase/metabolismo , Inibidores Enzimáticos/química , Tioureia/farmacologia , Tioureia/química , Relação Estrutura-Atividade
7.
Heliyon ; 10(1): e23323, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38163112

RESUMO

Inhibiting α-glucosidase is a reliable method for reducing blood sugar levels in diabetic individuals. Bis(dimethylamino)benzophenone derivatives 1-27 were synthesized from bis(dimethylamino)benzophenone via two-step reaction. Different spectroscopic techniques, including EI-MS and 1H NMR, were employed to characterize all synthetic derivatives. The elemental composition of synthetic compounds was confirmed by elemental analysis and results were found in agreement with the calculated values. The synthetic compounds 1-27 were evaluated for α-glucosidase inhibitory activity, except five compounds all derivatives showed good to moderate inhibitory potential in the range of IC50 = 0.28 ± 2.65 - 0.94 ± 2.20 µM. Among them, the most active compounds were 5, 8, 9, and 12 with IC50 values of 0.29 ± 4.63, 0.29 ± 0.93, 0.28 ± 3.65, and 0.28 ± 2.65, respectively. Furthermore, all these compounds were found to be non-toxic on human fibroblast cell lines (BJ cell lines). Kinetics study of compounds 8 and 9 revealed competitive type of inhibition with Ki values 2.79 ± 0.011 and 3.64 ± 0.012 µM, respectively. The binding interactions of synthetic compounds were also confirmed through molecular docking studies that indicated that compounds fit well in the active site of enzyme. Furthermore, a total of 30ns MD simulation was carried out for the most potent complexes of the series. The molecular dynamics study revealed that compound-8 and compound-12 were stable during the MD simulation.

8.
Saudi Pharm J ; 32(2): 101936, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38261938

RESUMO

In this work, we investigated Diospyros kaki extract and an isolated compound for their potential as xanthine oxidase (XO) inhibitors, a target enzyme involved in inflammatory disorders. The prepared extract was subjected to column chromatography, and dinaphthodiospyrol S was isolated. Then XO inhibitory properties were assessed using a spectrophotometry microplate reader. DMSO was taken as a negative control, and allopurinol was used as a standard drug. The molecular docking study of the isolated compound to the XO active site was performed, followed by visualization and protein-ligand interaction. The defatted chloroform extract showed the highest inhibitory effect, followed by the chloroform extract and the isolated compound. The isolated compound exhibited significant inhibitory activity against XO with an IC50 value of 1.09 µM. Molecular docking studies showed that the compound strongly interacts with XO, forming hydrogen bond interactions with Arg149 and Cys113 and H-pi interactions with Cys116 and Leu147. The binding score of -7.678 kcal/mol further supported the potential of the isolated compound as an XO inhibitor. The quantum chemical procedures were used to study the electronic behavior of dinaphthodiospyrol S isolated from D. kaki. Frontier molecular orbital (FMO) analysis was performed to understand the distribution of electronic density, highest occupied molecular orbital HOMO, lowest unoccupied molecular orbital LUMO, and energy gaps. The values of HOMO, LUMO, and energy gap were found to be -6.39, -3.51 and 2.88 eV respectively. The FMO results indicated the intramolecular charge transfer. Moreover, reactivity descriptors were also determined to confirm the stability of the compound. The molecular electrostatic potential (MEP) investigation was done to analyze the electrophilic and nucleophilic sites within a molecule. The oxygen atoms in the compound exhibited negative potential, indicating that they are favorable sites for electrophilic attacks. The results indicate its potential as a therapeutic agent for related disorders. Further studies are needed to investigate this compound's in vivo efficacy and safety as a potential drug candidate.

9.
J Biomol Struct Dyn ; : 1-11, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294714

RESUMO

Inhibitors of α-glucosidase have been used to treat type-2 diabetes (T2DM) by preventing the breakdown of carbohydrates into glucose and prevent enhancing glucose conversion. Structure-based virtual screening (SBVS) was used to generate novel chemical scaffold-ligand α-glucosidase inhibitors. The databases were screened against the receptor α-glucosidase using SBVS and molecular dynamics simulation (MDS) techniques in this study. Based on molecular docking studies, three and two compounds of α-glucosidase inhibitors were chosen from a commercial database (ZINC) and an In-house database for this study respectively. The mode of binding interactions of the selected compounds later predicted their α-glucosidase inhibitory potential. Finally, one out of three lead compound from ZINC and one out of two lead compound from In-house database were shortlisted based on interactions. Furthermore, MDS and post-MDS strategies were used to refine and validate the shortlisted leads along with the reference acarbose/α-glucosidase. The Hits' ability to inhibit α-glucosidase was predicted by SBVS, indicating that these compounds have good inhibitory activities. The lead inhibitor's structure may serve as templates for the design of novel inhibitors, and in vitro testing to confirm their anti-diabetic potential is necessary. These insights can help rationally design new effective anti-diabetic drugs.Communicated by Ramaswamy H. Sarma.

10.
J Biomol Struct Dyn ; 42(4): 1826-1845, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37114651

RESUMO

Three triorganotin(IV) compounds, R3Sn(L), with R = CH3 (1), n-C4H9 (2) and C6H5 (3), and LH = 4-[(2-chloro-4-methylphenyl)carbamoyl]butanoic acid, were prepared and confirmed by various techniques. A five-coordinate, distorted trigonal-bipyramidal geometry was elucidated for tin(IV) centres both in solution and solid states. An intercalation mode was confirmed for the compound SS-DNA interaction by UV-visible, viscometric techniques and molecular docking. MD simulation revealed stable binding of LH with SS-DNA. Anti-bacterial investigation revealed 2 to be generally the most potent, especially against Sa and Ab, i.e. having the lowest MIC values (≤0.25 µg/mL) compared to the standard anti-biotics vancomycin-HCl (MIC = 1 µg/mL) and colistin-sulphate (MIC = 0.25 µg/mL). Similarly, the anti-fungal profile shows 2 exhibits 100% inhibition against Ca and Cn fungal strains and has MIC values (≤0.25 µg/mL) comparatively lower than standard drug fluconazole (0.125 and 8 µg/mL for Ca and Cn, respectively). Compound 2 has the greatest activity with CC50 ≤ 25 µg/mL and HC50 > 32 µg/mL performed against HEC239 and RBC cell lines. The anti-cancer potential was assessed against the MG-U87 cell line, using cisplatin as the standard (133 µM), indicates 2 displays the greatest activity (IC50: 5.521 µM) at a 5 µM dose. The greatest anti-leishmanial potential was observed for 2 (87.75 at 1000 µg/mL) in comparison to amphotericin B (90.67). The biological assay correlates with the observed maximum of 89% scavenging activity exhibited by 2. The Swiss-ADME data publicised the screened compounds generally follow the rule of 5 of drug-likeness and have good bioavailability potential.


Assuntos
DNA , Simulação de Acoplamento Molecular , Ácido Butírico , Linhagem Celular , DNA/química , Simulação por Computador , Testes de Sensibilidade Microbiana
11.
Chem Biodivers ; 21(2): e202301815, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38152840

RESUMO

Pistacia chinensis subsp. integerrima (J.L. Stewart) Rech. f. is a plant known for its therapeutic applications in traditional medicine, which are related to its antimicrobial, anticancer, antioxidant, anti-inflammatory, analgesic, antidiarrheal, and muscle relaxant properties. The galls of P. chinensis are rich in triterpenes and flavonoids, and we here report the extraction of pistagremic acid (1), apigenin (2) and sakuranetin (3) from this source. The isolated compounds were tested against Aspergillus flavus, Candida albicans, Candida glabrata, Fusarium solani, Microsporum canis and Trichoderma longibrachiatum. The results highlighted the antimicrobial activity of flavonoids 2 and 3, suggesting that this class of molecules may be responsible for the effect related to the traditional use. On the other hand, when the compounds and the extract were tested for their antiproliferative activity on a panel of 4 human cancer cell lines, the triterpene pistagremic acid (1) showed a higher potential, thus demonstrating a different bioactivity profile. Structure-based docking and molecular dynamics simulations were used to help the interpretation of experimental results. Taken together, the here reported findings pave the way for the rationalization of the use of P. chinensis extracts, highlighting the contributions of the different components of galls to the observed bioactivity.


Assuntos
Pistacia , Triterpenos , Humanos , Antifúngicos/farmacologia , Triterpenos/farmacologia , Flavonoides/farmacologia , Extratos Vegetais
12.
Sci Rep ; 13(1): 20147, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978263

RESUMO

The signal transducer and activator of transcription 3 (STAT3) plays a fundamental role in the growth and regulation of cellular life. Activation and over-expression of STAT3 have been implicated in many cancers including solid blood tumors and other diseases such as liver fibrosis and rheumatoid arthritis. Therefore, STAT3 inhibitors are be coming a growing and interesting area of pharmacological research. Consequently, the aim of this study is to design novel inhibitors of STAT3-SH3 computationally for the reduction of liver fibrosis. Herein, we performed Pharmacophore-based virtual screening of databases including more than 19,481 commercially available compounds and in-house compounds. The hits obtained from virtual screening were further docked with the STAT3 receptor. The hits were further ranked on the basis of docking score and binding interaction with the active site of STAT3. ADMET properties of the screened compounds were calculated and filtered based on drug-likeness criteria. Finally, the top five drug-like hit compounds were selected and subjected to molecular dynamic simulation. The stability of each drug-like hit in complex with STAT3 was determined by computing their RMSD, RMSF, Rg, and DCCM analyses. Among all the compounds Sa32 revealed a good docking score, interactions, and stability during the entire simulation procedure. As compared to the Reference compound, the drug-like hit compound Sa32 showed good docking scores, interaction, stability, and binding energy. Therefore, we identified Sa32 as the best small molecule potent inhibitor for STAT3 that will be helpful in the future for the treatment of liver fibrosis.


Assuntos
Farmacóforo , Fator de Transcrição STAT3 , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Cirrose Hepática/tratamento farmacológico , Ligantes
13.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37895933

RESUMO

Copper(II) complexes with a general formula [Cu2(3,4-F2C6H3CH2COO)4(L)2], where L = 2-methylpyridine (1) and 3-methylpyridine (2), are reported here. The FTIR spectra of the complexes confirmed the bridging bidentate coordination mode of the carboxylate ligand. The low (475 and 449 cm-1) and strong (727 & 725 cm-1) intensity bands in the FTIR spectra, due to Cu-N stretches and pyridyl ring vibrations, confirmed coordination of the 2-/3-methyl pyridine co-ligands in complexes 1 and 2, respectively. A binuclear paddlewheel structural arrangement with a square pyramidal geometry was confirmed for copper atoms in the complexes via single-crystal X-ray analysis. The DPPH, •OH radical, and α-amylase enzyme inhibition assays showed higher activities for the complexes than for the free ligand acid. The binding constant (Kb = 1.32 × 105 for 1 and 5.33 × 105 for 2) calculated via UV-VIS absorption measurements and docking scores (-6.59 for 1 and -7.43 for 2) calculated via molecular docking showed higher SS-DNA binding potential for 2 compared to 1. Viscosity measurement also reflected higher DNA binding ability for 2 than 1. Both complexes 1 and 2 (docking scores of -7.43 and -6.95, respectively) were found to be more active inhibitors than the free ligand acid (docking score of -5.5159) against the target α-amylase protein. This in silico study has shown that the herein reported compounds follow the rules of drug-likeness and exhibit good potential for bioavailability.

14.
J Mech Behav Biomed Mater ; 148: 106188, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37856992

RESUMO

Electrophoretic deposition (EPD) of polyether ether ketone (PEEK) coatings on metallic implants has recently attracted a great deal of interest; however, further investigation into their corrosion, surface, and tribological properties is required for their clinical application. Using Potentiodynamic polarization and Mott-Schottky analysis of PEEK coatings, we analyzed the electrochemical corrosion behavior of electrophoretically deposited PEEK coatings on 316L stainless steel (SS) substrates. In addition, the tribological behavior of the coatings was determined through pin-on-disc and scratch testing. Initially, the EPD parameters were optimized using a Taguchi Design of Experiment (DoE) approach. The coatings exhibited irregular shaped grains along with ∼66 µm of thickness. Fourier transform infrared spectroscopy confirmed the presence of functional groups ascribed with PEEK. The coatings were moderately hydrophobic and had an average roughness of ∼2 µm. The corrosion studies demonstrated promising features of current density and corrosion potential, indicating that corrosion resistance significantly improves with PEEK coating. Electrochemical impedance spectroscopy also confirmed the corrosion resistance of PEEK coating. The coatings exhibited a slightly lower wear resistance than SS samples, but still possessed adequate wear and scratch resistance for biomedical applications. The current study confirmed that the PEEK coatings on metallic implants is effective for orthopedic applications where corrosion and tribology are major concerns.


Assuntos
Materiais Revestidos Biocompatíveis , Aço Inoxidável , Aço Inoxidável/química , Materiais Revestidos Biocompatíveis/química , Corrosão , Polietilenoglicóis/química , Cetonas/química , Éteres
15.
ACS Appl Bio Mater ; 6(11): 5052-5066, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37857344

RESUMO

Additive manufacturing (also known as 3D printing) is a promising method for producing patient-specific implants. In the present study, sodium alginate (Na-ALG)/poly(vinyl alcohol) (PVA) polymer blends of varying ratios (1:0, 3:1, 1:1, and 1:3) were used to produce tailored-designed skin scaffolds using a 3D bioprinter. Samples of skin scaffolds were printed at 20 layers with a layer height of 0.15 mm using a needle with an inner diameter of 330 µm while maintaining the extrusion speed, extrusion width, and fill density at 10 mm/s, 0.2 mm, and 85%, respectively. The Na-ALG/PVA blend with a 3:1 ratio showed the best printability due to its good viscosity and minimal nozzle leakage, allowing for the fabrication of skin scaffolds with high fidelity and the desired morphological characteristics. Then, copper-silver doped mesoporous bioactive glass nanoparticles (Cu-Ag MBGNs) were incorporated into the Na-ALG/PVA blend (which had already been prepared by using a Na-ALG:PVA ratio of 3:1) in order to obtain therapeutic (angiogenic and antibacterial) effects. The fabricated Na-ALG/PVA/Cu-Ag MBGNs biocomposite scaffolds with dimensions of 20 mm× 20 × 3 mm3 and pore size of 400 ± 60 µm exhibited a promising fidelity. The presence of chemical bonds attributed to Na-ALG, PVA, and Cu-Ag MBGNs and the uniform distribution of Na, C, and O elements within the microstructure of the scaffolds were confirmed by EDX, SEM, and FTIR analyses. The scaffolds were hydrophilic and exhibited proper swelling and degradation behavior for skin tissue engineering. According to the inhibition halo test, the scaffolds exhibited strong antibacterial activity against Staphylococcus aureus and Escherichia coli. The cytocompatibility to human-derived fibroblast cells was confirmed by the WST-8 assay and in vivo Chorioallantoic Membrane Assay. In addition, Na-ALG/PVA/Cu-Ag MBGNs showed angiogenic potential, exhibiting favorable wound healing properties.


Assuntos
Nanopartículas , Álcool de Polivinil , Humanos , Cobre , Prata , Engenharia Tecidual , Alginatos , Antibacterianos/farmacologia , Escherichia coli
16.
J Biomol Struct Dyn ; : 1-14, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723868

RESUMO

Leishmaniasis is a fatal disease caused by the leishmania parasite. For the survival of the leishmania parasite, Sterol C24-Methyl Transferase (SMT) is essential which is an enzyme of the ergosterol pathway. SMT protein mutation is responsible for Amphotericin-B drug resistance in Leishmania, which is the main treatment for visceral leishmaniasis. Amphotericin-B resistance is caused by three mutated residues V131I, V321I and F72C. The underlying mechanisms and structural changes in SMT enzymes responsible for resistance due to mutation are still not well understood. In the current study, the potential mechanism of resistance due to these mutations and the structure variation of wild and mutant SMT proteins were investigated through molecular dynamics simulations and molecular docking analysis. The results showed that AmB established strong bonding interaction with wild SMT as compare to mutants SMT. The binding energy calculation showed that binding energy of AmB with mutants SMT increases as compare to the wild SMT. Further structural based virtual screening was carried out to design potential inhibitors for the mutant SMT. On the basis of structural-based virtual screening four inhibitors (SANC01057, SANC00882, SANC00414, SANC01047) were computationally identified as potential mutant SMT (F72C) inhibitors. This work provides valuable information for improved management of drug resistant Leishmaniasis.Communicated by Ramaswamy H. Sarma.

17.
Sci Rep ; 13(1): 14466, 2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660065

RESUMO

Cancer immunotherapy has significantly contributed to the treatment of various types of cancers mainly by targeting immune checkpoint inhibitors (ICI). Among them, V-domain immunoglobulin suppressor of T cell activation (VISTA) has been explored as a promising therapeutic target. Besides, histone deacetylase 6 (HDAC6) has been demonstrated to be efficacious target for several cancers. The current theoretical work was performed to explore the virtual repurposing of the FDA-approved drugs as inhibitors against these two (VISTA and HDAC6) cancers therapeutic targets. The crystal structure of the two proteins were downloaded from PDB and subjected to virtual screening by DrugRep webserver while using FDA-approved drugs library as ligands database. Our study revealed that Oxymorphone and Bexarotene are the top-ranked inhibitors of VISTA and HDAC6, respectively. The docking score of Bexarotene was predicted as - 10 kcal/mol while the docking score of Oxymorphone was predicted as - 6.2 kcal/mol. Furthermore, a total of 100 ns MD simulation revealed that the two drugs Oxymorphone and Bexarotene formed stable complexes with VISTA and HDAC6 drug targets. As compared to the standard drug the two drugs Oxymorphone and Bexarotene revealed great stability during the whole 100 ns MD simulation. The binding free energy calculation further supported the Root Mean Square Deviation (RMSD) result which stated that as compared to the ref/HDAC6 (- 18.0253 ± 2.6218) the binding free energy score of the Bexarotene/HDAC6 was good (- 51.9698 ± 3.1572 kcal/mol). The binding free energy score of Oxymorphone/VISTA and Ref/VISTA were calculated as - 36.8323 ± 3.4565, and - 21.5611 ± 4.8581 respectively. In conclusion, the two drugs deserve further consideration as cancer treatment option.


Assuntos
Antígenos de Grupos Sanguíneos , Neoplasias , Humanos , Detecção Precoce de Câncer , Desacetilase 6 de Histona , Bexaroteno , Oximorfona , Imunoterapia , Neoplasias/tratamento farmacológico
18.
Heliyon ; 9(8): e19160, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37636438

RESUMO

In the current research work, an amide based metal carboxylate chemical ([((5-((5-(2-hydroxyethyl)-4-methylthiazol-3-ium-3-yl)methyl)-2-methylpyrimidin-4-yl)amino)bis((4-((4-methoxy-2-nitrophenyl)amino)-4-oxobutanoyl)oxy)zinc]) was identified as anti-diabetic analgesic and anti-inflammatory. The identified chemical(MT-1) was tested for acute toxicity (the MT-1 was fund safe), antidiabetic analgesic, and anti-inflammatory potentials. The in-vitro study was conducted for antidiabetic enzyme inhibition (α-amylase and α-glucosidase) and the in-vivo studies included analgesic (acetic acid-induced writing and hot plate model) and anti-inflammatory (carrageenan etc induced edema) effects. The tested compound showed 88.63% (IC50 = 3.23 µg/ml) and 89.10%(IC50 = 5.10 µg/ml) againstα-amylase and α-glucosidase respectively. A significant (p < 0.001) analgesic effect was noted by MT-1 in acetic acid-induced animal models with a percent effect of 86.00, 60.,06, and 55.29 at the tested doses of 20, 1,0, and 5 mg/kg respectively. In the case of the hot plate model, the MT-1 showed a significant (p < 0.001) effect with maximum percent prolongation in latency observed after 60 min.08, 22.2,9, and 11.61) against 20, 1,0, and 5 mg/kg. The analgesic effect in the hot plate model was significantly (p < 0.01) reversed by the injection of naloxone (0.125 mg/kg). The paw edema induced by carrageenan, histamine, bradykinin, arachidonic acid, and PGE2 was significantly antagonized with percent attenuation of 34.09, 33.57, 34.60, 34.14, and 48.04 respectively. Furthermore, to predict the interactions between the MT-1 compound and COX-2 molecular docking was carried out and the result was compared with the standard compound. The docking score of MT-1 was predicted as -6.30 while that of Diclofenac was predicted as -6.82. Both compounds made several hydrogen bond interactions with the active site of the COX-2 enzyme. The docking study revealed the potent inhibitory potential of the compound MT-1 against the COX-2 receptor.

19.
Bioorg Chem ; 140: 106760, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37647806

RESUMO

A series of new thiadiazine derivatives including 2-(5-alkyl/aryl-6-thioxo-1,3,5-thiadiazinan-3-yl) propanoic acids (a) and 4-methyl-2-(5-alkyl/aryl-6-thioxo-1,3,5-thiadiazinan-3-yl) pentanoic acids (b) were synthesized by reacting primary alkyl/aryl amines with CS2, followed by reaction with formaldehyde and amino acids. The chemical structures of synthesized compounds were confirmed by 13C- NMR and 1H- NMR techniques. The inhibitory potential of major inflammatory enzymes, COX-2 and 5-LOX was examined. Moreover, anti-nociceptive and anti-inflammatory activities were evaluated in the in vivo thermally induced nociceptive, and carrageenan induced paw edema models in mice. The in-vitro results reflect that these compounds exhibited concentration dependent inhibition of COX-2 and 5-LOX. The tested compounds at 50 mg/kg showed significant effect on thermally induced pain, and reduced latency time (seconds) as compared to the vehicle treated animals. Moreover, tested compounds exhibited percent inhibition of paw edema in the carrageenan induced paw edema model in mice. Furthermore, the binding modes of the most active COX-2 and 5-LOX inhibitors were determined through computational methods. The computational study reflects that the docked compounds have high binding affinities for COX-2 and 5-LOX enzymes, which leads to inhibition of these enzymes.


Assuntos
Tiadiazinas , Animais , Camundongos , Carragenina , Ciclo-Oxigenase 2 , Aminas , Aminoácidos
20.
RSC Adv ; 13(37): 25717-25728, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37649663

RESUMO

In this study, twenty eight novel oxadiazole derivatives (5-32) of the marketed available non-steroidal anti-inflammatory drug (NSAID), (S)-flurbiprofen (1), were synthesized via I2 mediated cyclo-addition reaction in better yields. The synthesized hydrazone-Schiff bases were cyclized with iodine by using potassium hydroxide as a base in DMSO solvent to obtain oxadiazole derivatives (5-32). Structures of the synthesized products were confirmed with HR-ESI-MS, 1H-NMR spectroscopy and CHN analysis. After structure confirmations all analogs were evaluated for urease (in vitro) inhibitory activity. Amongst the series, fourteen compounds 20, 26, 30, 24, 21, 16, 28, 31, 32, 7, 19, 13, 10, and 6 were found to be excellent inhibitors of urease enzyme, having IC50 values of 12 ± 0.9 to 20 ± 0.5 µM, better than the standard thiourea (IC50 = 22 ± 2.2 µM), whereas the remaining fourteen derivatives displayed good to moderate activity. The in silico study was executed to analyse the interaction between the active site of the enzyme (urease) and the produced compounds. The docking study revealed that compounds 20, 26, 30, 24, 21, 16, 28, 31, 32, 7, 19, 13, 10, and 6 had lower docking scores than the standard compound thiourea and revealed better interactions with the urease enzyme.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...